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Abstract

Speech and language do not occur in a vacuum - much of the meaning
of an utterance comes from its context, including when and where it was
uttered, what the person saying it was doing at the time, who was there to
listen to it, and why the speaker decided to speak in the first place. In my
research, I aim to unify a number of disciplines such as speech recognition,
discourse modelling, plan recognition and natural language understanding
into a single coherent framework that deeply understands situated speech.
To do so, such a framework has to interact with the world it shares with other
language users and model and understand this world in ways similar to theirs
to establish a shared context. In this proposal, I describe the elements of such
a framework that shares a virtual game playing world with several human
players. The framework models the progress of the game in terms of the
physical situation, the discourse situation and the players’ plans and goals
and grounds speech uttered by the players in terms of these rich situational
models.

Note: The use of “we” in this document refers to myself and members of the
Cognitive Machines group, unless otherwise noted.

1 Introduction

The idea of designing machines that understand human language is older than the
oldest electrical computing machines [9]. Speech and language are powerful tools
that let us affect the world in sophisticated ways, and it is only natural that we think
of a language understanding machine as having the ideal human-computer inter-
face. However, despite decades of intense research on the computational language
understanding problem, we do not have machines today that even approximate the
natural and flexible ways in which human beings use and understand language.

Encouraging progress has been made in several sub-problem areas. Speech
recognition has flourished to the degree that commercial products using such tech-
nology have seen some success for constrained recognition settings like business-
oriented dictation. Speech recognition has also seen great success in call routing,
where learned associations lead to robust behaviour in a constrained task [19]. We
have sophisticated understanding of many aspects of natural language phenomena
such as grammar and morphology, and many efficient algorithms to parse syntax
and other surface level aspects of human language [2]. There are also systems
that attempt to tie words and syntactic structures to symbolic representations of a
domain of discourse, such as airline reservations or product support information.



Finally, we have seen the emergence of statistical algorithms that exploit large
semi-structured bodies of text such as the World Wide Web to link query words to
other words in the text so as to retrieve results that are meaningful to the human
user [6].

Why have none of these methods, each one useful in its own confined realm
of applications, produced a language understanding system that shows some of
the flexibility, robustness and ease inherent to human language? I will argue that
there are crucial aspects to human language understanding that each of these ap-
proaches fails to acknowledge. These aspects can be summarized in the following
key statement:For a machine to understand language, it must assign meaning to
words for its own purposes and from its own perspective by autonomously inter-
acting with the world and other language users.To elucidate the importance of
this way of viewing meaning from a machine’s point of view, I describe some of
its implication in more detail in the following:

SituatednessLanguage and especially speech are produced in a certain situation.
Often, the physical surroundings of the speaker play a large role as possible
referents. This is especially clear in the use of deictics such as “this” or “the
red one”, but pervades all of language use.

Context Meaning depends not only on the physical situation, but also on other
aspects of context such as the current state of discourse, shared knowledge
and history, as well as shared goals of speakers and listeners. An utter-
ance obtains much of its meaning from this context, leading to seemingly
sparse utterances conveying much information, also termed theefficiency of
language[4].

Embodiment Hand-in-hand with situatedness goes the notion of the language
user’s embodiment. Without some notion of a body (say, for example,
a spatial location occupied by the speaker), situatedness is impossible to
achieve. Embodiment contextualizes language in further ways, exemplified
most clearly by the use self-relative meaning such as “the one on my left”,
“this is too heavy for me” or simply “I”. Along with the notion of having a
body comes that of having a specific body, that not only affords one a point
of view, but dictates one’s other interactions with the world. The type of
these interactions in turn lead one to encode the world differently than one
might have with a different body.

Cross-Realm Context While situatedness and embodiment in the physical world
are important aspects of language understanding, there are many other do-
mains of discourse that can provide a situating context and a differing in-
stantiation of the speaker’s body. To name only a few, we regularly speak
of items we or others possess (“Can I have your torch?”), our social em-
bedding (“he is my friend”) and our goals (“I’m trying to open that door”).
Each domain may require different ways of reasoning and speaking, but



can be linked to others by analogy and the use of indexicals (the meaning of
“this one” or “I” bind to any of the domains, and often to several at once).
A language understanding system must be able to reason and understand in
the context of many domains and decide which domains are applicable for
understanding any given utterance.

Dynamic Goal-Based Interaction While embedding language understanding in
the context of a body in a concrete situation within one or more domains
of discourse lets us begin to tackle some issues of reference and language
understanding that cannot be addressed in single-domain unsituated systems
without bodies, it still may be tempting to view language understanding as
a one-directional encoding process. In this view, the situation is statically
encoded by the understanding system, be it human or machine, and words
are tied to this encoding to achieve meaning. But in fact, it is purposeful
interaction with the world, not passive perception of the world, that leads
to the useful encoding, efficient information transfer and rich meaning that
language affords human beings.

The goal of the research proposed here is to design and build the first speech
understanding system for a virtual environment that exhibits all of the aspects of
deep understanding listed above. While none of these aspects will be as rich as
they are in human beings, I believe that a system that incorporates even simplified
solutions to these demands will demonstrate a robust flexibility in understanding
that will encourage further research in more sophisticated situational embeddings.
There are two types of machine understanding possible in this context. In the first
type, a machine models the perception, situatedness, embodiment and interaction
of other language users and understands language that these speakers use to talk
to each other. It is easier to collect representative data for this type, as human
beings speak to each other naturally in many situations without the need to first
implement an understanding machine. In the second type, the machine itself is the
embodied and situated conversation partner, with its own perceptive capabilities
and goals. In my work, I pursue the path of first tackling the former problem, that
of modelling human beings’ understanding and situation, but limit the situation at
hand and the perception possible on part of the language users to be such that it is
possible to gain very similar understanding of the situation and very similar per-
ceptive capabilities when the understanding problem is transferred to a machine
that is a full-fledged language user in its own right. I have applied this approach
successfully so far, and this proposal follows the same approach.

To record speakers in a rich yet measurable environment that includes a notion
of embodiment, spatial location, possessions, roles and goals I turn to graphical
multi-user role playing games. Players in these games use language to commu-
nicate within the game, to coordinate their action and to achieve their goals. The
game setting also allows me to shape the scenario players find themselves in, to
assign roles and impose problems, making otherwise hard-to-measure features



more easily estimable. Finally, the game setting is not only an effective research
platform, but also has immediate relevance to the large and growing video game
entertainment market, which currently does not include any games that use speech
understanding. The type of situated and robust speech understanding that is the
goal of this research would open the doors to a whole new type of game and gam-
ing interface.

This research necessarily draws from a variety of fields including speech recog-
nition, natural language processing, qualitative and causal reasoning, reasoning
under uncertainty, linguistics, philosophy of language and mental representation,
cognitive science, speech and discourse understanding and plan recognition re-
search. As a thoroughly interdisciplinary project that puts the problem of un-
derstanding language, one of the core means of human expression, this work fits
ideally into the Media Laboratory’s research agenda, and especially within the
Cognitive Machines group’s interests.

2 My Proposed Research

In the following sections I detail the elements and results of my research so far.
I also explain in each section how I will proceed to expand and change the prior
research towards my newly set goals. Figure 1 shows an overview diagram of
the architecture of the proposed approach. Depicted on the outside is a cycle of
physical actions and situations as well as utterances made by players. Utterances
and physical actions are interwoven and influence each other. The system lis-
tens to speech via its grounded language parser, which during the parsing process
connects the words heard to current, past or future situations within the game.
Aspects of these situations, namely the physical aspects, the discourse state and a
hierarchy of possible player plans serve as possible referents during the ground-
ing process, and are in turn updated by the grounded parser when the utterance is
understood. On the other side, a situation tracker maps the event of actions occur-
ring in the game to the situational models to let parsing occur in a fully up-to-date
context at any given time. Each element of this diagram is explained in detail in
the following sections.

2.1 Settings and Data Collection

I have so far primarily investigated what I will callegocentric visually grounded
language use. All language that played a role in my projects so far was primarily
about visual aspects of a scene. I collected data from human beings describing
objects they saw, either real objects on a table, or virtual objects rendered on a
screen. Beyond attributes of the objects such as colour and shape, I was primarily
interested in how people use spatial relations and groupings in describing objects
(“the green one behind the three purple ones”), and set up data collections that
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Figure 1: The architecture of the proposed system

naturally caused participants to use such constructs to distinguish amongst many
otherwise identical objects. I call this visual setup, and the spatial relations par-
ticipants used, ’egocentric’, because they assume a specific viewpoint associated
with an agent. We later transferred this viewpoint based language understanding
system to Ripley, our robot, and added the ability to refer to others’ viewpoints
(“my left” vs. “your left”). However, the language embedding and as a result the
language used are still relative to a specific agents’ visual perception of the world.

One way to push this research further is to stay with the immediate physical
surroundings as a situation, but to enrich the language grounding in this situation
to include aspects of language use such as past and future events, plans and goals,
hypothetical situations and more complete models of the physical world that in-
clude notions of touch, object topology and the function of objects. One’s imme-
diate physical surroundings, however, are only a small part of what we regularly
talk about. Another, and at least at first glance somewhat orthogonal challenge,
is to show how the language grounding strategies that we have developed over



the years transfer to other domains of human discourse, such as talk about one’s
location in space, possessions, social relations, abilities, and goals. In the research
proposed here, I am aiming to show that our physical grounding philosophy can be
extended to cover these different domains of human discourse without losing its
important feature of being based on a continuing interaction with the embedding
situation.

Just as was the case for the egocentric visual grounding of language, I propose
to start the investigation using a virtual environment, and having human partici-
pants speak about this environment. A virtual environment has the advantage that
it can be designed to elicit the types of language use that I am proposing to cover
here, while simplifying the sensing and action problems robots face in the real
world. A virtual environment is especially necessary in this case as we do not
have robots that can robustly navigate an environment, be aware of their location,
have objects in their possession, perform acceptable speech recognition, perform
physical actions that are of use in a realistic setting and be aware of their own
and their collaborators capabilities and goals. Furthermore, I have found it to be
an extremely useful to first collect data from people interacting with other people
in the environment of interest. This provides a baseline because we know of this
data that it was at least understood by other human beings in the same situation. In
many ways, embedding human players in a virtual environment has the nature of
a Wizard of Oz study, where the players are both the subject and the wizards. We
do not yet have an artificial agent that can understand situated language with all
the facets described in the introduction. However, human beings are such agents,
and by embedding them in a virtual environment that makes most aspects of their
interaction and its context easily recorded, I hope to produce a set of data that
allow me to design a stand-in artificial agent for any player. This agent can sense
everything that the player sensed, and is thus put in the same situated language
understanding situation as the player, with the only difference that it cannot ac-
tively make decisions, but rather has to follow the decisions the human player
made when the data was recorded. Note that the agents still has to model and un-
derstand these decisions to be able to understand the accompanying language, it
just does not decide itself. After this agent is designed and successful at following
along a player’s path and understanding the situated language that occurs along
the way, it can be given its own decision making mechanism and let loose on the
world to share it as an autonomous entity with other players.

The virtual environment I have prepared for data collection in the last few
months is that of online, graphical multiplayer role-playing games. These games
embed the player (via his or her avatar) in a rich graphical world that includes
a myriad of objects, rooms, doors, creatures, other players and problems to be
solved. Each avatar has pre-assigned capabilities and a resulting clearly defined
role (for example, that of being a fighter who is strong and capable in combat
vs. that of being a thief who can hide, pick locks and disarm traps). As a result,
each character also enters in interesting social relations with the other characters,



which develop further as the game progresses. Finally, this environment is ideal
because it comes with tools that allow one to shape the physical surroundings
of the characters, the objects they will find and have to interact with, and the
creatures and quests they will encounter. Players regularly make use of typed
language when playing these games. Figure 2 shows a sample of this type of
language collected from several players playing a popular game module.

player 3 : elrlilia - stay still!
player 3 : did you get it?
player 2 : you want me to drink this?
player 3 : yes
player 2 : isn’t it better saved for battle?
player 1 : I can rest in here
player 3 : or - we could rest
player 2 : let’s go rest
player 1 : I am the king of the castle
player 2 : whew
player 2 : fabio; did you loot all those chests?
player 3 : one chest
player 2 : weapons racks?
player 3 : two weapon racks - some arrows, not much
player 2 : ok
player 1 : anybody heavier than this bolder -

please step onto the platform
player 2 : gimme a sec...
player 3 : do it do it!
player 1 : wish I could
player 1 : anyone got something heavy to throw in?
player 3 : maybe we need to convince somebody GIB
player 3 : BIG
player 2 : we missed a room up top
player 3 : have you guys been down this corridor?
player 2 : i checked the corpse, just gold

Figure 2: Gaming Language Sample

I have instrumented a popular game of this type, Neverwinter Nights (shown in
Figure 3), so that I can collect not only the text users type (like the sample above),
but also their movements and actions, such as item pick-ups and drop-offs, doors
opened and levers pulled. Furthermore, the game world can be scanned for object
and room locations. The data will therefore consist of a complete record of the
game situation, physical changes to the situation, player actions and player text
messages. In addition to the online collection that only includes typed text, I



Figure 3: The Neverwinter Nights graphical role-playing game

will also perform some in-lab data collection where I will record players’ time
synchronized speech instead of text messages.

Having collected the data, I will split them into a training set that I will use to
build and train the understanding system and a test set, that I will set aside to test
the system once it is complete. I will annotate the training data in several ways.
I will identify grammatical constituents in the data and bracket them to train the
natural language parser, discussed below. For each constituent, I will also mark
whether it refers to an object in the game environment, and, if so, to which one.
This includes objects such as sub-tasks of quests to be solved (e.g. the unlocking
of a door that bars the way onwards) or abilities of characters (“Can you unlock
this door?”). I will also mark how each constituent refers to its referent (e.g. by
egocentric spatial relation (“the one in front of me”) or allocentric spatial relation
(“the one in the North-East corner”) and what type of action (or speech act) the
whole utterance constitutes (e.g. informative description (“there’s a chest here”)
or request for help (“can you open this chest for me?”)). What types of reference
and types of speech acts cover the data will only be clear after looking through
the training data, just as I did in my previous egocentric visual reference projects.
Once the system is built, I will annotate the testing data in the same way for
evaluation purposes.



2.2 Speech Recognition

In previous work I have used my group’s own speech recognizer, the sphinx 4
speech recognizer as well as manually transcribed speech. In each case, however,
the input to the language understanding system was a single string of text, namely
the best guess of the speech recognizer given the acoustic signal, or the manual
transcription if no speech recognizer was used. This leads to brittleness in a live
system like Ripley, because a mis-recognized utterance cannot be corrected at later
stages of understanding. Rather, the system either signals a failure, or performs
an inappropriate action if the words it the speech recognizer produced could be
interpreted.

In the proposed research I will use the Sphinx 4 speech recognizer which pro-
duces probabilistic lattices as output. As will be explained in the following sec-
tions, accepting probabilistic lattices as input to the natural language parser will
allow me to chain a probabilistic n-best list of interpretations of the acoustic model
all the way to the semantic grounding in the current situation. As a result, all lev-
els of processing can refine the decision as to what the speaker should be taken to
have said. For example, while the speech recognizer might produce a lattice that
has “toes the boar” as its most likely sentence given no other information, a pass
through the parser might produce “close the boar” as a more likely path through
the lattice, whereas the grounding in the situation at hand might correct this once
more to read “close the door” (this example is for illustration purposes, as both
the speech recognizer and the parser might well correct the utterance earlier due
to the statistics of words and syntax they maintain).

I will use both the text training data collected and the transcribed speech train-
ing data to construct trigram language models for the speech recognizer using
standard tools.

2.3 Language Grounding

The data collected from people describing objects in cluttered scene to each other
yielded a set ofdescriptive strategies, combinations of linguistic patterns and vi-
sual features, that speakers employed in combinations to unambiguously identify
referents. I identified the main strategies covering most of the collected data, and
designed and implemented corresponding modules that attach to the rules of the
natural language grammar as well as the lexical entries [20].

Conceptually, I treat lexical entries like classes in an object oriented program-
ming language. When instantiated, they maintain an internal state that can be as
simple as a tag identifying the dimension along which to perform an ordering, or
as complex as multidimensional probability distributions. Each entry also has a
function interface that specifies how it performs semantic composition. Currently,
the interface definition consists of the number and arrangement of arguments the
entry is willing to accept, whereas type mismatches are handled during compo-
sition rather than being enforced through the interface. Finally, each entry can



contain a semantic composer that encapsulates the actual function to combine this
entry with other constituents during a parse. The lexicon may contain many lexi-
cal entries attaching different semantic composers to the same word. For example,
“left” can be either a spatial relation or an extremum. The grammatical structure
detected by the parser (see the next Section) determines which compositions are
attempted in a given utterance.

During composition, structures representing the objects that a constituent ref-
erences are passed between lexical entries. I refer to these structures asconcepts.
Each entry accepts zero or more concepts, and produces zero or more concepts as
the result of the composition operation. A concept lists the entities in the world
that are possible referents of the constituent it is associated with, together with real
numbers representing their ranking due to the last composition operation. A com-
poser can also mark a concept as referring to a previous visual scene, to allow for
anaphoric reference. It also contains flags specifying whether the referent should
be a group of objects or a single object (“cones” vs. “cone”), and whether it should
uniquely pick out a single object or is ambiguous in nature (“the” vs. “a”). These
flags are used in the post-processing stage to determine possible ambiguities and
conflicts.

The chart parser incrementally builds up rule fragments in a left to right fash-
ion during a parse. When a rule is syntactically complete, it checks whether the
composers of the constituents in the tail of the rule can accept the number of ar-
guments specified in the rule. If so, it calls the semantic composer associated with
the constituent with the concepts yielded by its arguments to produce a concept
for the head of the rule. If the compose operation fails for any reason (the con-
stituent cannot accept the arguments or the compose operation does not yield a
new concept) the rule does not succeed and does not produce a new constituent.
If there are several argument structures or if a compose operation yields several
alternative concepts, several instances of the head constituent are created, each
with its own concept.

The framework as it stands makes a number of simplifying assumptions with
regards to the domain of reference of an utterance, and the speaker’s intentions:
the domain is always the set of immediately visually perceivable objects (and
groups thereof), whereas the intention was always assumed to be one of pure
description and reference. In the version of this framework that runs on Ripley,
we have extended the possible intentions of the speaker to include commands to
perform various actions on single objects. One of the primary goals of the research
proposed here is to loosen both assumptions.

To extend the existing framework to cover multiple domains in parallel, it is
necessary to augment both the features measurable, as covered in the last section,
and the grounding performed during parsing. In dropping the assumption that all
utterances are descriptions or simple action requests involving objects currently
physically present, it becomes necessary to determine which domain an utterance
refers to, and what the speakers intention in producing the utterance is. There are



two sources of information which can be used to make these determinations: the
words said, and how they tie to measurable features of the current world state, and
a discourse and intention history that may bias the understanding system one way
or another. Here, I only cover the grounding of words in the currently measurable
world state, whereas intention tracking is left for Section 2.5.

In my work so far, it is already the case that words can be grounded in several
distinct ways, such as “left” exercising a different grounding in “to the left of”
versus “the left one”. However, due to the one-domain assumption made, words
like “one” could be assumed to be referring to visible physical objects only. Given
the multi-domain nature of the language collected in the gaming environment pro-
posed, words must now be able to tie to entities in one or more domains. Some
words may only tie to one or two domains, such as “left” being primarily con-
cerned with ego- and allocentric spatial language. Others, such as “one” or “I” are
domain-transcending. Each utterance, however, can be taken to have at least a pri-
mary domain of reference - “do you have the sword?” falls clearly in the domain
of possession, whereas “There’s a chest in the South-East room” is an allocen-
tric description of the physical world. Thus, not only will I build new grounding
and semantic composition modules to cover the new domain, but the grounding
process will have to estimate several things for each utterance interpreted:

1. what is the domain of reference for this utterance?

2. which objects in the domain does this utterance refer to?

3. what proposition is being expressed?

4. what speech act is the speaker engaging in, and why (in terms of the speak-
ers goals being tracked)?

Note that each utterance may have several distinct set of referents, especially when
it involves transitive verbs. Finding answers to these questions involves tying
words to possible referents, just as in the egocentric visual grounding case, and
composing the semantics of words, which applies constraints that narrow down
the possible sets of referents and intentions. I believe that my existing framework
will extend to cover these new demands.

To support the probabilistic integration with speech recognition, parsing and
intention tracking levels, I have recently unified the modules that tie words to the
world by using Tenenbaum’s example generalization algorithm, which is quickly
trained from very few examples and gives an estimated probability of how likely
a new example belongs to a class of previous named examples [50]. Thus, at
the end of the parsing and grounding process, the system will produce probabili-
ties over possible domains, referents and intentions that integrate all information
considered by the system.

As the game language sample above shows, the language used by players is
highly elliptic, contextual and unconstrained. As in the egocentric visual case, it



is unlikely that I will be able to design a system that covers all language used.
However, by designing a more constrained gaming world that lets the system be
informed not only about the physical layout of objects in the world, but also give
it a good idea as to players’ possible goals at any given time. It should be possible
to cover the majority of utterances in this setting, which would mark a significant
step forward in situated language understanding.

2.4 Parsing and Grounded Semantic Composition

As mentioned before, I have so far used a deterministic bottom-up chart parser. A
bottom-up parser was suited to the often ungrammatical utterance people produce
in freeform object descriptions, because it produces all possible sub-parses of an
utterance even if the utterance as a whole cannot be parsed. The resulting chart
is a rich analysis of the utterance heard, and can be analysed for contradictions,
ambiguities and underspecification. The parsing process itself also doubles as a
convenient driver for the language grounding process, under the assumption that
the constituents produced by the parser are units that can be bound to the ground-
ing process, be it via visual reference to objects (“the green ones”) or modification
of other grounding processes (“my left” vs. “your left”).

There are two drawbacks to the types of parser used in the work so far. The
minor drawback is one of efficiency, well known about pure bottom-up parsers,
but exaggerated in our case because parsing drives grounded semantic interpreta-
tion. A bottom-up parser produces all sub-parses of an utterance, even those that
cannot be part of higher level syntactic structures due to the nature of the gram-
mar. While this has an advantage because in our case we cannot be sure that an
utterance as a whole will actually be grammatical according to the grammar, it is
still true that many constituents are produced during the parsing process that could
be eliminated by specifying that the system needs to parse at least to, say, a noun
phrase or a verb phrase to be able to act on an utterance at all.

The second, more serious, drawback of using a non-probabilistic parser is that
alternatives produced by the parser are hard to compare to each other, and that
probabilities produced by either the speech recognizer or the semantic grounding
system cannot easily be folded into the actual parsing process. In our system, the
parser currently works from a non-probabilistic best hypothesis from the speech
recognizer, and the only influence of the semantic grounding on the actual pars-
ing process is in the case that no possible referents are produced, in which case
the current parse tree being pursued is discarded. Furthermore, in interpreting
the chart produced by the parser, I currently use the semantics produced by the
grounding engine together with heuristics involving coverage of a parse within
the utterance to decide between different parses of the same utterance. However,
this does not allow for a an good decision between different interpretations that is
equally informed by the acoustic signal, the syntactic likelihood and the semantic
binding of the candidates.



We have recently implemented an probabilistic Earley parser that works both
top-down and bottom up simultaneously. In addition to producing parse trees of
sentences, this parser computes the probability of each parse given the grammar,
where the probabilities encoded in the grammar can be learned from the data I will
collect. This parses solves both of the problems described above, while retaining
the advantages of a bottom-up chart parser. The probabilistic lattice produced by
the speech recognizer can be flattened to resemble the bottom part of a proba-
bilistic chart, specifying which words were heard at certain times, together with
probabilities of their occurrence. The probabilistic Earley parser works directly
off this pre-initialized chart, incorporating the speech recognizer’s probabilities
directly into the parsing process without performing a separate parse for each hy-
pothesis encoded in the lattice. During the parsing process, this parser computes
the probability of each constituent produced. Given the the grounding engine
already computes probabilities representing the likelihood with which each con-
stituent refers to objects and actions in the world, these probabilities can also be
taken into account when calculating the overall probability values for the various
candidate parse trees. The final decision between different interpretations is thus
made easier and more informed, as it incorporates information from all under-
standing modules in a rigorous manner.

2.5 Situation Tracking

So far, I have discussed language understanding as a problem of tying words to
various representational levels of the current situation. In my work to date, I sim-
plified the understanding problem to only deal with the current static situation, or
at most one previous situation. In the proposed multiplayer game setting, how-
ever, it will be of utmost importance to track many aspects of the situation as it
develops, and to maintain a history of salient past situations. I usesituationhere
much like Barwise and Perry use the term [4]. In the game environment, I envision
the situation to include at least the

physical situation including the player’s location, the current time, visible ob-
jects and current possessions

discourse situation including the words uttered, the addressee(s), previous dis-
course turns and their types, and possible targets for anaphora

planning situation including goals and subgoals currently held by players

All three of these aspects of the total situation are intricately linked and can inform
each other. All three are also not easily observable, for even though the percep-
tion problem is simplified in the game world, knowing the distances objects are
away from the player does not tell us which object he or she has actually seen,
is currently paying attention to, or is salient in the current situation. Note also
that both utterances and non-linguistic actions should play into our tracking of the



situation: utterances’ references and speech act types can be disambiguated given
the current situation as described in previous sections, whereas their interpreta-
tion should update our belief about the current situation. Similarly, non-linguistic
actions such as player movement or object manipulation can be interpreted in the
light of the current situation and inform beliefs about future situations. Finally, to
resolve anaphora and deictic references in utterances and to estimate hierarchies
of plans and discourse levels it is not only necessary to track the current situation,
but to search and integrate a history of situations.

A asks B to "unlock 
this chest"

B unlocks chest
A gets key from 

chest
A uses key to open 

door
B says "there you go"

Open Door

Obtain Means of Opening Door

Open Chest

Request Conversation

Request for Action
B: addressee

language parser

language parser

Fulfilled Action Request

language parser

Feedback

Physical Situation

Figure 4: A sample parse of hypothetical game events

To build a high level hierarchical model capable of tracking the current and
past situations, I propose to first abstract the raw temporal data (movements, ut-
terances, events) into a higher level description that only contains possibly salient
events such as entering a new room, nearing an object, pulling a lever. Further-
more, I propose to parse this event timeline once more with a probabilistic con-
text free grammar parser. The grammar for this parser is largely dictated a priori
by the game’s design. For example, a game scenario might have the top level



goal of finding a certain artifact. To find this artifact, the players have to make
their way past a partially ordered sequence of puzzles, each of which is a con-
stituent in the top level rule, for example TOPGOAL→ PUZZLE1 PUZZLE2
PUZZLE3. Each puzzle in turn has known elements, for example PUZZLE1→
OPENDOOR(DOOR1). Note that goals refer to other objects, and that it is im-
portant that other elements of the current situation change rule probabilities. For
example, a specific door might be opened by a key that must be found first, or one
of the players might be able to bash in a non-metal door. The probabilistic parse is
thus not situation-independent [36]. Figure 4 illustrates the utility of such a parse
on a sequence of hypothesized game events. In this sequence, player A is looking
for means to open a door blocking the way, and asks player B to unlock a chest,
in which he finds the key to open the door. A parse of the events yields top level
goals and subgoals as well as discourse segments and participants. The language
parser described before ties words to referents either in the game setting (“chest”)
or in the history items encoded in this event parse, such as the discourse and action
event in which player B fulfilled player A’s request. Modelling the event sequence
in this way thus provides a rich substrate for grounding utterances not only in the
immediate game world, but also in items seen in the past, the player’s goals and
conversational elements.

The probabilistic parsing framework once more allows for robust treatment of
the uncertainty inherent in listening to player’s utterances and interpreting their
actions. It coherently incorporates evidence from the event stream and the lan-
guage parser, and provides suitable priors and abstract entities to disambiguate
utterances and find appropriate referents. While general probabilistic plan recog-
nition is a hard and often intractable problem, the advantage in the setting pro-
posed here is that many of the higher level plan items, such as which steps the
players need to do in which order to make it through the game, are known a priori
and can be encoded in the grammar used for event parsing. This a priori structure
together with easy sensing of the game setting and independence assumptions in
the parsing process such as those in [36] should make the problem tractable in this
specific setting.

Note that the framework proposed in this section can be co-opted for planning
in addition to plan recognition, making it possible to turn the whole system from
a pure recognition and modelling system into one that directly interacts with the
world and other players.

2.6 Evaluation

Once I have designed the system based on the training data, I will run it on the
testing data. At this point, the testing data will be marked up manually, just like
the training data was before, with transcripts of the speech, bracketed grammati-
cal constituents, speech act tags and referents in the game world, discourse states
or player’s plans (i.e. paths through the plan recognition grammar). I will then



evaluate accuracy in terms of percentage of correct speech act classification, ob-
ject referents, and discourse and plan classification and referents. I will analyse
failures in detail. Depending on the nature of the data, it may well be necessary
to have several independent human judges mark up parts of the data establish a
baseline performance in the human interpreter case.

Another form of evaluation will measure the improvements over the various
stand-alone components of the system: How much is speech recognition perfor-
mance improved by performing situated understanding? How much is parsing
performance improved? These questions can be answered by running each com-
ponent separately on the test data and comparing the result with that of running
the full understanding system on the same data.

Secondly, I will build a computer-controlled character for Neverwinter Nights
that is driven by the language understanding framework proposed here. It will
be limited in its range of actions compared to human players, because aspects
like in-game puzzle solving ability or language and speech generation are not the
focus of this research, but would be necessary for a human-equivalent artificial
player. However, an artificial character can still serve as an in-game aid to players.
Using this role, I will record more data, this time of human players adventuring
together with their computational servant. This will let me evaluate new elements
of the system, such as command understanding rate as well as the usefulness of
the framework when making its own decisions.

3 Contributions

It is my hope that this thesis will produce the first system that can be considered
to be performing deep speech understanding in the sense that it interactively con-
nects an acoustic speech signal to words, sensed external objects, possessions and
speaker’s plans and intentions.

Specifically, I hope to show

• that games are a viable platform to study situated speech understanding

• that speech understanding is more easily performed by considering and
modelling the shared situational context of an utterance, including the phys-
ical situation, discourse context and speaker’s plans

• that the non-linguistic situation an utterance occurs in disambiguates many
aspects of an utterance including referents and the speaker’s purpose

• the richness of meanings of indexicals, especially those referring to agents,
such as “I”

• an implemented framework that performs deep situated speech understand-
ing, performing better than any of it’s individual components by combining
their activity



4 Background and Related Work

There are several research areas that cover aspects of the problem at hand, or
address related problems. In the following, I discuss these areas and the most
relevant works in them.

4.1 Relevant Linguistics and Philosophy

I have already hinted at a view of the work proposed here as a continuous, com-
putational and interaction-based view of Barwise and Perry’s situation theory of
natural language [4]. By emphasizing the continuous situational modelling and
interaction aspect of speech understanding, I align my work in spirit with writers
like Smith and Bickhart [48, 5]. Their thoughts about how a subject can come to
acknowledge the existence of objects at all come in at a much more fundamental
level than the one the work proposed here addresses. However, they emphasize
the importance of seeing representation not as a passive encoding of an external
world, but as an interaction process that involves action as much as sensation. I be-
lieve this view and criticism transfers directly from Smith’s metaphysical worries
and Bickhart’s logical incoherence arguments to a framework such as the one pro-
posed here. Seeing the problem not as one of encoding the world in a suitable way,
but as one of interacting with the world in ways similar to other language users,
one’s focus shifts from encodings to the importance of goal-based behaviours at
all levels, which is a shift that influence the design of a language understanding
system.

A further important influence on the work proposed here are notions of con-
sciousness and the self in Philosophy of Mind. Dennett points out the complexity
hidden behind a word like ’consciousness’, and argues that it is a collection of
processes that can be explained [13]. I believe it is time to commit to build-
ing complex systems with parts interacting with each other and with the outside
world in rich ways if our aim is to have truly intelligent and deeply understand-
ing machines emerge. In the context of the work proposed here, I hope to also
elucidate the richness of human concepts related to consciousness and labelled by
words like “I” and “you”. Some writers in philosophy have acknowledged some
of the complexity behind establishing meanings for these words in terms of, for
example, egocentric and allocentric spatial locatedness [22, 17]. In my view, there
are still many more facets of these concepts remaining to be explored, and I hope
that the platform proposed here will shed some light on the different senses “I”
takes in different situations and domains.

4.2 Speech Recognition

Speech is a very natural and spontaneous means of human expression, often su-
perior in convenience and naturalness to typed input. At the same time, speech is



a far noisier input modality than typed text, both due to the problems in capturing
and analysing audio, and due to its online spontaneity, allowing speakers to delay,
rephrase and underspecify while still being understood by listeners. Listeners are
able to understand such noisy speech not only due to their sophisticated acous-
tic and linguistic processing capabilities, but also due to the fact that all speech
occurs embedded in a situation that allows listeners to perform disambiguation
and understanding. Speech that is hard or impossible to understand when heard
without situational grounding becomes easy process when the situation is shared
between speaker and listener. The research proposed here focuses on analysing
the embedding of language in a situation on multiple levels, and thus it is natu-
ral to use speech as an input medium to gain its advantages in human machine
communication and show that situational embedding helps greatly with improved
understanding of noisy spontaneous speech.

The most common approach to speech recognition today entails the use of
Hidden Markov Models (HMMs) to estimate word string probabilities from acous-
tics [28, 37]. Improving speech recognition via situational embedding implies that
the speech recognizer cannot be treated as a black box that turns an acoustic sig-
nal into a stream of words. The tight coupling approach considers syntactic (and,
by extension, semantic) information while interpreting the acoustic signal [25].
This is also the approach we have used in previous work to integrate models of
visual attention and semantic knowledge directly into the language model used
for speech recognition. Modern speech recognizers, however, give access to the
compactly representedn-best resulting word strings with associated probabilities.
In the sequential coupling approach, parsing and semantic interpretation are per-
formed on thisn-best lattice representation [11]. In my work I plan to favour this
loose coupling approach as it allows for the revising of estimates made by the
speech recognizer without the added overhead of implementing an interpretation
system integrated into the recognition process.

An important backdrop for the work discussed here are also call routing sys-
tems that perform speech recognition and a form of speech understanding in that
they carry on a dialog with the called and take routing actions due understanding
the user’s speech. While not situated in the sense proposed here, these systems
are robust and widely deployed in their limited domain. Most interestingly, the
semantic associations for words and utterances are automatically learned from
speaker data [19], which will also be the case for elements of the system proposed
here.

4.3 Speech and Language Grounding

Winograd’s SHRDLU is a well known system that could understand and generate
natural language referring to objects and actions in a simple blocks world [52].
Like our system it performs semantic interpretation during parsing by attaching
short procedures to lexical units [29]. However, SHRDLU had access to a clean



symbolic representation of the scene, whereas the system discussed here works
with a continuous virtual world and reasons over many domains in addition to the
base physical layer. Furthermore, we intend our system to robustly understand
the many ways in which human participants verbally interact in a situated game
setting, whereas SHRDLU was restricted to sentences it could parse completely
and translate correctly into its formalism.

Word meanings have been approached by several researchers as a problem of
associating visual representations, often with complex internal structure, to word
forms. Models have been suggested for visual representations underlying colour
[26] and spatial relations [38, 39]. Models for verbs include grounding their se-
mantics in the perception of actions [47], and grounding in terms of motor control
programs [3, 31]. Object shape is clearly important when connecting language
to the world, but remains a challenging problem in computational models of lan-
guage grounding. In previous work, we have used histograms of local geometric
features which we found sufficient for grounding names of basic objects (dogs,
shoes, cars, etc.) [42]. This representation captures characteristics of the over-
all outline form of an object that is invariant to in-plane rotations and changes
of scale. Landau and Jackendoff provide a detailed analysis of additional visual
shape features that play a role in language [27]. For example, they suggest the im-
portance of extracting the geometric axes of objects in order to ground words such
as “end”, as in “end of the stick”. Shi and Malik propose an approach to perform-
ing visual grouping on images [46]. Their work draws from findings of Gestalt
psychology that provide many insights into visual grouping behaviour [51, 14].
Engbers et al. give an overview and formalization of the grouping problem in
general and various approaches to its solution [16].

Our model of incremental semantic interpretation during parsing follows a tra-
dition of employing constraint satisfaction algorithms to incorporate semantic in-
formation starting with SHRDLU and continued in other systems [23]. Most prior
systems use a declaratively stated set of semantic facts that is disconnected from
perception. Closely related to our work in this area is Schuler’s, who integrates
determination of referents to the parsing process by augmenting a grammar with
logical expressions [45], much like we augment a grammar with grounded com-
position rules (see Section 2.4). Our emphasis, however, is on a system that can
actively ground word and utterance meanings through its own interactions with the
world. Even though the system described here senses a synthetic scene, it makes
continuous measurements during the parsing process and keeps track of the situa-
tion even when no utterances occur. Schuler’s system requires a human-specified
clean logical encoding of the world state, which ignores the noisy, complex and
difficult-to-maintain process linking language to a sensed world. We consider this
process, which we call the grounding process, one of the most important aspects
of situated human-like language understanding.

SAM [7] and Ubiquitous Talker [30] are language understanding systems that
map language to objects in visual scenes. Similar to SHDRLU, the underlying



representation of visual scenes is symbolic and loses much of the subtle visual
information that our work, and the work cited above, focus on. Both SAM and
Ubiquitous Talker incorporate a vision system, phrase parser and understanding
system. The systems translate visually perceived objects into a symbolic knowl-
edge base and map utterances into plans that operate on the knowledge base. In
contrast, we are primarily concerned with understanding language referring to a
continuously sensed and modelled world.

In tackling issues of indexical resolution and general speech understanding via
multimodal sensing, the work proposed here is also related to work in multimodal
interfaces that incorporate a speech component [32]. The shared world proposed
here, however, is of much greater diversity and immersiveness than that typically
shared with the user, in, say, a pen based map input device. In the world pro-
posed here, we can study many aspects of the actual embedding of people in the
world, such as physical locatedness and collaboration in a spatial environment.
Furthermore, our focus is not the integration of two input modalities, but the un-
derstanding of speech embedded in a rich context.

In the realm of games and language, Chapman’s Sonja system addresses some
of the issues raised here [10]. It’s focus is less on the language understanding
problem than on the use of terse instructions to an otherwise autonomous video
game playing engine. It is similar to the work proposed here in that it perceives
the video game situation in human-like ways and understands goals and linguistic
referents in relation to this situation. However, I am primarily interested in a far
more sophisticated version of the language understanding problem in a similar
setting, a version that includes speech, multiple domains of reference, free-form
language use and explicit goal and discourse state tracking, all of which are not
present in Sonja.

We have previously proposed methods for visually-grounded language learn-
ing [42], understanding [41], and generation [40]. The main work I propose to
extend here was a visually grounded system that could understand complex hu-
man descriptions of objects in cluttered scene [20]. I distinguish between aspects
of this work already implemented in this previous work and proposed new ele-
ments in the preceding sections.

4.4 Natural Language Parsing and Understanding

Chart and Earley parsers are well studied parsing frameworks amenable to the
task outlined here due to their ability to parse bottom-up in a partial manner [2,
15]. The probabilistic version of the Earley parser was designed specifically for
applications in speech recognition using tight coupling [49, 25], but can equally
be used for a sequential coupling setup [11].

SHRDLU is based on a formal approach to semantics in which the problem
of meaning is addressed through logical and set theoretic formalisms. Partee pro-
vides an overview of this approach and to the problems of context based meanings



and meaning compositionality from this perspective [34]. Our work reflects many
of the ideas from this work, such as viewing adjectives as functions. Pustejovsky’s
theory of the Generative Lexicon (GL) in particular takes seriously noun phrase
semantics and semantic compositionality [35]. Our approach to lexical semantic
composition was originally inspired by Pustejovsky’s qualia structures.

Many of the symbolic counterparts to the ideas in my work are explored at
lengths in the computational language understanding literature [2]. However, it
is especially work on situation semantics that considers many of the same crucial
issues of language understanding I investigate here, such as the influence of the
situation an utterance occurs in on the utterance’s meaning [4]. While the original
work provides a rich ontology of possible influences on meanings such as roles,
situation types and courses of events, it neglected actual grounding in the world
when Barwise and Perry casts it as a logical framework. I share the same intu-
ition and the same accompanying criticism of any theory of semantics, such as
possible world semantics, that neglects the influence of the situation on meaning.
In addition, I believe that embedding in and interaction with a world are key to
human-like rich meaning, as opposed to the one-to-one mappinganchorsthat link
symbols to referents in the original situation semantics theory.

4.5 Discourse Tracking and Plan Recognition

Being cast in the larger framework of time-extended interaction of several play-
ers with a virtual world and each other, it becomes necessary to acknowledge and
track higher level and longer features of communication and interaction such as
discourse and plans [44, 21]. Both are seen as involving hierarchies of subgoals,
and it is only natural that context free grammars, which are good at capturing and
recognizing time extended hierarchies with specific independence structures, have
been proposed for modelling both plans and discourse phenomena. Specifically,
recent work in probabilistic plan recognition has looked to probabilistic context
free grammars and closely related frameworks for determining possible plan hi-
erarchies from agents’ behaviours under uncertainty [36, 8]. These improve on
the previous uses of probabilistic models for plan recognition by acknowledg-
ing and exploiting the hierarchical structure of plans that make flat probabilistic
plan recognition attempts using Dynamic Bayesian Networks tend towards the in-
tractable [1, 12]. Probabilistic models are also used for certain types of discourse
tracking [24, 33], and context free grammars can once more be used to model the
hierarchical nature of discourse [43, 18]

5 Timeline

I plan to finish data collection and analysis by the end of summer ’04, design,
implementation and evaluation by the end of fall term of ’04 and the thesis and



defence by the end of spring term ’05.

6 Resources

No resources beyond the standard PCs, microphones and networking facilities
already available to me at the Media Laboratory are required.
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