
Predicting Future User Actions by Observing Unmodified Applications

Peter Gorniak and David Poole
Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada
pgorniak@cs.ubc.ca, poole@cs.ubc.ca

Abstract

Intelligent user interfaces often rely on modified applica-
tions and detailed application models. Such modifications
and models are expensive to build and maintain. We pro-
pose to automatically model the use of unmodified applica-
tions to solve this problem. We observe a user’s interactions
with the application’s interface and from these observations
infer a state space which the user navigates and the stochas-
tic policy he or she follows. ONISI, the algorithm presented
here, builds this state space implicitly and on-line, and uses
it to predict future user actions. Trials with real users show
that this algorithm predicts the next user action significantly
better than another current algorithm.
Content Areas: plan recognition, human computer interac-
tion, automated modeling, software agents

Introduction
Artificial Intelligence supplies a vast set of tools to be ap-
plied to the design of intelligent user interfaces. While
our previous research (Gorniak 1998) as well as countless
other projects sample indulgently from this set and often
produce quite impressive results in their own environments
(for example, see (Horvitz, Breese, Heckerman, Hovel and
Rommelse 1998) and (Albrecht, Zukerman, Nicholson and
Bud 1997),) there emerge some new challenges when one
attempts to apply these results to a new application.

1. The research results often do not transfer easily to a new
application.

2. The actual implementation used in the research relies
upon a modified application. This modification is usu-
ally non-trivial, time-consuming to repeat and increases
application complexity.

3. Researchers work from various, often hand-crafted ap-
plication models. In addition to the application building
work in 2, an application designer needs to specify such a
model. This process is often not straightforward and may
rely on empirical data from user trials. An application de-
signer’s primary task does not include designing such a
model, and thus the task seems an added difficulty to him
or her. Also, the model needs to be updated and will tend
to lag behind the application during maintenance.

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We are currently addressing these problems by investigat-
ing how much knowledge can be extracted from a user’s in-
teraction with an application without any prior information
about the application’s purpose or structure and without any
modifications to the application (somewhat in the spirit of
(Lieberman 1998).) We hypothesize that enough knowledge
can be extracted to yield a detailed model of the application
and its user. This model can then serve both as a knowledge
source for other algorithms as well as provide a context un-
der which to unite methods.

Other application independent user models build no ap-
plication model at all, and thus do not provide any auto-
matic analysis of the application. We show that they perform
worse in cases where such application knowledge boosts
performance, such as future action prediction (Davison
and Hirsh 1998). Others stop early on in their analysis
and subsequently rely on application specific knowledge
(Encarnacao 1997). Our approach is similar to the web pre-
caching work by Zukerman, Albrecht and Nicholson (1999),
but they do not perform any kind of history analysis for
state identification, except for simple frequency counts. We
show here that frequency counts generally do not capture the
user’s current state as well as other possible identifiers.

In this paper, we employ a user modeling strategy to pre-
dict future user actions. It was our hope in choosing this do-
main that our extensive use of structured observations and
history analysis would increase our prediction accuracy as
compared to simpler approaches. Also, knowledge about
future user actions can be useful to achieve various goals
in many applications, thus providing an ideal target for a
general application independent approach like ours. Specif-
ically, predicting the user’s next action allows application
designers to automate tasks for the user, to initiate time-
intensive tasks before the user requests them and to identify
a user by comparing his or her real actions with the predicted
ones. For example, Davison and Hirsh (1998) use next ac-
tion prediction for UNIX command line completion. Cur-
rent web browsers support a similar feature for URL com-
pletion. Debevc, Meyer, Donlagic and Svecko (1996) devel-
oped an adaptive toolbar that adjusts its displayed collection
of tools based upon user behaviour. A next action predic-
tion algorithm performs exactly the kind of analysis needed
to make decisions in such adaptive interfaces. Zukerman
et al. (1999) pre-cache web pages for users by predicting



their next request. Lane (1999) uses Hidden Markov Mod-
els to detect security breaches by comparing a user’s current
behaviour to the HMM derived from their past behaviour.
We believe the same goal can be achieved by comparing the
predictions made by a next action prediction algorithm to the
real user actions. Finally, knowledge about future user ac-
tions is valuable to intelligent help systems. These systems
can use such information to identify user plans and help the
user to achieve his or her current goals. We expand further
on how our approach to user modeling can be used to sup-
port other intelligent interface components in (Gorniak and
Poole 2000).

Let us view the user as an agent. Our assumption is
that we can and have observed this agent acting in an en-
vironment, namely using an application. Artificial Intelli-
gence concerns itself with agents acting in environments and
worries about what decisions such agents should make. A
common approach to such a problem consists of phrasing
it in terms of states and actions between states and com-
ing up with a policy that, perhaps stochastically, dictates
which actions to take in which states (Boutilier, Dean and
Hanks 1999). We are faced with the opposite problem: we
see an agent acting in an environment and want to model
the agent’s decision process. We assume that the agent acts
according to a policy. Each action is the result of some (pos-
sibly stochastic) function of what the agent observes and the
agent’s belief state. Our goal is to determine this policy and
the state space to which it applies.

The following section describes our approach in detail.
Our algorithm performs an on-line implicit state identifica-
tion (ONISI). That is, it assigns probabilities to all possi-
ble actions in the currently observed interface state. It ar-
rives at these probabilities by estimating how much support
the observed interaction history contains given the history
recorded immediately prior to entering the current state. To
do so, it employs a k nearest neighbours scheme that uses
sequence match length as a metric.

The section on implementation describes the Java imple-
mentation of the work presented here. This implementation
works as a wrapper to existing Java applications and is able
to record their interfaces states as well as user actions with-
out modifications to the original application. The results
section compares our algorithm, ONISI, to IPAM (Davison
and Hirsh 1998), another next action prediction algorithm
in user trials and shows that our algorithm performs signifi-
cantly better by exploiting behavioural patterns found in the
recorded user history. Finally, we conclude by discussing
what the research presented here reveals about the issues in-
volved in analysing user history and point to future research
directions.

State Identification Algorithms
A state for the user consists of a combination of the user’s
internal state and the application’s interface state. At a given
time, the user chooses an action from a probability distribu-
tion based upon the current state. We attempt to determine
the policy the user is employing from our observation of the
user’s interaction history. To do so, we hypothesize internal

states of good predictive power in addition the observed in-
terface states by searching the observed interaction history
for behavioural patterns. These implicitly identified states
refine the frequently very coarse observations of application
interface states and let us predict more accurately what ac-
tion the user will choose next. In the following, we call the
currently observed interface state s and the possible next ac-
tion currently under consideration a.

In the context of this work the only information to identify
the current state is the observed interaction history. There
are several choices we must make as to how to mine this
information. We need to choose

1. A type of pattern to extract from the interaction history
that can be matched against recently occurring actions,

2. A method to summarize the occurrence of a pattern in
history,

3. A function that ranks the currently possible actions ac-
cording to the summaries of applicable patterns.

IPAM (Davison and Hirsh 1998) exemplifies one possi-
ble set of choices. They choose pairs of actions occurring
in sequence as a pattern and summarize them by increas-
ing the probability of those that occur and decreasing the
probabilities of all others. Finally, they rank the currently
possible actions by considering all the pairs that start with
the action that occurred one timestep ago and selecting the
one of highest estimated probability to predict the next ac-
tion. These choices make an implicit Markov assumption,
namely that the last action together with the current sum-
mary provided by the probability estimates contain enough
information to predict the next state. Looking at real user
interaction traces we found that often users enter modes that
can be easily identified by examining the behavioural pat-
terns they engage in, but that these patterns span more than
two actions in a row. For example, in the search algorithm
application we investigated users would either step through
a problem or simply look at an algorithm’s result. Both of
these modes can be identified and the actions that occur in
them predicted by looking several steps back. IPAM fails to
do so, and cannot make a significant fraction of predictions
in this case.

To remediate this problem, we decided to automatically
vary the length of patterns we identify. Indeed, we deem
patterns more important to the state identification process if
they are longer, building on the idea that longer patterns cap-
ture the current state better. Overall, we choose our patterns
to be the longest sequences in history that match the imme-
diate history. Given a small integer k, at time t in state s
we summarize the sequences that predict action a by com-
puting lt(s, a): the average of the lengths of the k longest
sequences that end with action a in state s and match the
history sequence immediately prior to time t. We rank cur-
rently possible actions according to this summary value for
each action (i.e. according to the average of the lengths of
patterns the action completes.) Due to our decision to view
match length as the important criterion, we only consider k
maximum length sequences so as to avoid making the av-
erage less distinctive by considering more. In short, rather
than estimating the probability of the next action given the



Current Interface 
State (at time t)

possible
next
Action

History of Interface State/Action Pairs

s1 s2 s3
a1

s3s2 s1
a2 a3a2a2

s1s3s2
a1 a3a3a2

l = 2l = 1

Figure 1: Example for On-Line Implicit State Identification

previous action like IPAM does, we estimate the probability
of the next action given as much as we deem significant of
the history that occurred immediately before this timestep.
We determine significance by whether this sequence occurs
previously in the observed history. This approach leans on a
similar one used to identify hidden states during reinforce-
ment learning (McCallum 1996). It is also akin to automa-
tion approaches that identify repeated patterns in user his-
tory (Ruvini and Dory 2000), but has the more general goal
of modeling the use of an unmodified application.

Our measure of history support assigns no importance to
how frequently actions occur, but only to how long the pat-
terns are that they complete. However, action frequencies
do encode a type of history support for an action that may
augment the type of support we capture using match length.
Specifically, a certain action may not be a part of long pat-
terns, but its occurrence may be strongly correlated with
that of another action. To account for this possibility, we
reintroduce a simple frequency measure (f(s, a)), namely
how many times an action has been taken from the current
state. This term measures only state-action correlation and
not action-action correlation like IPAM does, but it is less
expensive to compute than IPAM’s probability estimate. We
experimentally traded off between the match length measure
normalized across all possible actions,

lt(s, a)
∑

i lt(s, ai)

and the frequency measure, also normalized,

f(s, a)
∑

i f(s, ai)

using a parameter 0 ≤ α ≤ 1 to see when each would be
useful. Figure 2 summarizes the ONISI k-nearest neigh-
bours algorithm.

When normalized across all possible actions from the cur-
rent state, R(s, a) can be interpreted as the current probabil-
ity of each action.

Figure 1 shows an example step of ONISI on a short his-
tory sequence. The application is currently observed to be in
state s3 and the algorithm is ranking the possible action a3
from that state with k = 3. As shown, it finds {3, 1, 0} as the
set of maximum length sequences matching the immediate
history, and thus calculates

lt(s3, a3) =
0 + 1 + 2

3
= 1.

Assuming that all actions provide a sum
∑

i lt(s, ai) = 5,
that action a3 has occurred 50 times in interface state s3,

Given the currently observed interface state s, the action
a currently under consideration, a small integer k to in-
dicate how many pattern matches to consider and a real
value 0 ≤ α ≤ 1 to indicate how to weigh off between the
match length measure and the frequency measure, where
α = 1 uses only the match length measure and α = 0
only the frequency measure,

1. Compare the immediate history starting at t with the
state-action pair (s, a) and running backwards through
all the recorded history. Find the k longest sequences
in the recorded history that match the immediate his-
tory (they can be length 0).

2. Average the length of these sequences and call this
average lt(s, a).

3. Count the number of times a has occurred in s and call
this f(s, a).

4. Return ranking

Rt(s, a) = α
lt(s, a)

∑
i lt(s, ai)

+ (1 − α)
f(s, a)

∑
i f(s, ai)

where the sums run over all possible actions from s.

Figure 2: The ONISI k-nearest neighbours algorithm

and that s3 has been visited 100 times overall, ONISI run
with α = 0.9 finally assigns a rank of

Rt(s3, a3) = 0.9
1
5

+ 0.1
50
100

= 0.18 + 0.05 = 0.23

to action a3 in observed interface state s3 at time t.

Implementation
Java’s reflective capabilities and dynamic loading strategy
make the language a prime candidate for an application inde-
pendent approach (JDK 1998). It allows not only inspection
of a structure of known visual components, but it can also in-
spect unknown components for state information. Java and
JavaBeans introduced standard naming conventions for ob-
ject methods. For example, isVisible() returns the visibility
status of visual components, whereas getEnabled() returns
whether they are currently useable. Components derived
from standard Abstract Window Toolkit components inherit
these methods automatically, and other components should
define them. Java’s Reflection mechanism, on the other
hand, allows one to check whether a given object includes
one of these state-revealing methods, and lets one call this



method without knowing the object’s class. Finally, Java’s
dynamic loading of classes rids the developer of needing to
link with or even know about classes that will be present at
runtime. Using these tools, one can establish the user in-
terface state of an application built using Java at runtime by
dynamically linking into its code, examining the methods
available in its objects and calling the methods relevant to
the interface state. This process requires no modification of
the targeted application at all.

The system used for the experiments presented below runs
as a wrapper to a Java application. Before it starts the appli-
cation, it hooks itself into the application’s event queue and
thus sees all event activity within the Java Abstract Window
Toolkit and components derived from it. It intercepts each
such event that it considers an action (such as a button be-
ing pressed or a window closed) and records the observed
state of the application’s interface before and after the event
occurs. In this way, this system establishes a state space of
interface observations as a person uses the application and
records a history consisting of actions and visited states at
the same time.

The applications1 under consideration here are educa-
tional AI applications. They were written to help undergrad-
uate university students learn concepts in Artificial Intelli-
gence. One application familiarizes the student with search
problems and algorithms, the second deals with constraint
satisfaction problems and the third demonstrates backprop-
agation neural network learning. In each, the student has
the option to either load an example problem or to create
his or her own problem by drawing a graph. He or she can
then switch to a problem solution mode and step through the
various algorithms at different levels of detail. The students
used these applications to solve homework problems for an
introductory AI course they were taking. Most of the assign-
ment questions referred to a supplied example problem, so
the students tended to explore the problem creation facilities
of the applications less than their solving functionality. The
following discussion and results focus mainly on the appli-
cation for search algorithms.

Results
ONISI depends on two parameters: k and α. Figure 3 shows
a graph of ONISI’s performance over a range of values for
these parameters, measured in percentage of actions pre-
dicted correctly for the search algorithm application (the ap-
plication that yielded the largest dataset of about 2200 user
actions.) The other two applications show similar trends,
but due to the smaller dataset sizes they are less distinct. The
graph continues to level out for larger values of k and perfor-
mance continues to get worse for smaller values of α. Note
that figure 3 is greatly magnified, and thus detailed features
of the graph are likely not significant and should be ignored.

Concerning k, the graph shows the behaviour one would
hope for in a nearest neighbour approach: small values of k
show the same performance as larger ones, and thus suffice
to capture history support accurately. As for α, a setting that

1The applications can be found at
http://www.cs.ubc.ca/labs/lci/CIspace/.

10

20

30
k

0.75
0.8

0.85
0.9

0.95
1alpha

78.6

78.8

79%Correct

k

Figure 3: Performance at various parameter settings

assigns almost all importance to the match length measure
yields the best performance, but if the frequency measure is
ignored (α = 1.0,) performance degrades. Upon inspection,
the cases that are successfully predicted at α = 0.9, but not
at α = 1.0 are indeed those where there are k maximal (but
short) length matches in history for several actions and the
default random choice between them that is used at α = 1.0
performs worse than using the frequency measure to distin-
guish between them by setting α = 0.9. All the following
experiments were run with k = 5 and α = 0.9.

We compared the implicit version of our state space ap-
proximation to IPAM which its authors in turn compare to
a number of others (Davison and Hirsh 1998). IPAM esti-
mates P (at+1|at = x), i.e. the probability of the next ac-
tion given the previous action. To do so, they build a table
with all possible actions as rows and as columns and update
its entries to be their desired probabilities during runtime.
Specifically, they decrease all action pair probabilities in the
row of the current action by a factor of 0 < α < 1 (note that
this α is different from the α ONISI uses to trade of between
frequency and length measure) and boost the probability of
the action pair that just occurred by adding 1 − α, thus en-
suring that the probabilities in a row continue to add up to
1.

We found IPAM to perform best on our data with a value
of α = 0.9, and all results here occur with that setting.
The graphical user interface setting under investigation here
differs somewhat from the UNIX command line prediction
IPAM was designed for, and so does the state identification
framework. To level the playing field, we let IPAM consider
observed action-state pairs of the interface to be individual
actions for its predictions. Taking state into consideration
in this way produces better action distinctions, and IPAM’s
performance increases slightly (by ca. 2% for the search ap-
plication.)

Figure 4 shows the percentage of actions predicted cor-
rectly by ONISI and IPAM for the search, neural network
and constraint satisfaction applications. The numbers in
parentheses indicate the number of actions recorded for each

http://www.cs.ubc.ca/labs/lci/CIspace/


20

40

60

80

% Correct

Random

IPAM

ONISIS

Max Freq.

Application

Neural Net (1112) Constraint (175)Search (2157)

Figure 4: Performance of ONISI vs. IPAM

application. As baselines, the chart also indicates the per-
centage of actions predicted correctly using just the maxi-
mum action frequency in a state (ONISI with α = 0) and by
picking a random action amongst all that have been observed
in a state. In each case the algorithms ran in a realistic setting
with no access to actions that lie in the future. There are few
users who performed enough actions to allow for meaning-
ful analysis on a per-user basis, so the data were treated as if
produced by a single user in successive sessions. We believe
that the applications are simple enough and the user’s goals
and experience levels similar enough to validate this simpli-
fication. The differences in the percentages of actions that
can be predicted for each application stem partially from the
differing number of actions recorded for each, but also from
the nature of the application. First, the random prediction
baseline shows that as a tendency the number of possible ac-
tions for a given interface states increases with the number
of total actions we record from users. Second, the frequency
measure demonstrates that slightly less than half the actions
in any of the applications can simply be predicted from the
frequency distribution recorded in an interface state. Third,
It is expected that with less data to predict from all predic-
tion performances decrease, except that of the random pre-
dictions. As expected, ONISI degrades more gracefully than
IPAM, because IPAM requires some time for its predicted
probabilities to converge.

As for the difference in prediction performance of ON-
ISI and IPAM as compared to the frequency measure in the
search and neural network applications: the recorded history
for the search application includes long runs of the students
stepping through a problem. These runs consist entirely of
one action, and are easy to predict for either algorithm, mak-
ing the overall prediction percentages of ONISI and IPAM
high and close in value. Neither the neural net nor the con-
straint application show this type of student behaviour in the
histories. To document this fact we recorded the average
maximum match length ONISI detects when finding the k
nearest neighbours. For the search application, this average
lies at a length of 14.2 steps, whereas for the Neural Net ap-
plication it is 4.6 steps, indicating that indeed long sequence
matches are abundant in the search application.

Overall, ONISI performs better for each application with
statistical significance at greater than 95% confidence as

given by a chi-square test using a directional hypothesis for
each of the applications. Why does ONISI perform better?
Some clear patterns emerge when looking at the specific ac-
tions that it predicts but IPAM (and, we suspect, other ap-
proaches that work from a very short, fixed length interac-
tion history) fail to predict:

• While the IPAM probability estimates take some time to
converge for a new user, ONISI is able to identify a dis-
tinct behavioural pattern if it has only occurred once be-
fore.

• ONISI successfully identifies state information hidden in
the user’s history beyond the last action. For example,
there are two modes in which users seem to learn about
search algorithms with the search application. In one
mode, a user will switch to a new search algorithm and
step through the problem by hand to learn how the algo-
rithm works.

State Action
Stepping ActionEvent on

Step
Goal Node
Reached after
Stepping

ActionEvent on
Ok

Stepping ActionEvent on
Reset Search

Problem Solu-
tion Mode

ItemEvent on
Breadth First
Search

Problem Solu-
tion Mode

ActionEvent on
Step

Table 1: Typical Search Action Sequences

In the other mode, as exemplified in Table 1, a user wants
to learn about the result of different search algorithms,
rather than the process, and immediately displays this
result after switching to a new search algorithm. The
problem for IPAM consists of the fact that the last ac-
tion, namely the switch to a different search algorithm,
does not encode the mode in which the user is currently
using the application. In fact, often even the last few
actions are not sufficient to identify this mode, because
the user has likely just finished another search problem
and clicked through a sequence of result dialogues - a
sequence that is the same for either mode. ONISI, how-
ever, easily distinguishes these modes, because it finds
some nearest neighbours that match the whole history
sequence in the Table 1 and further actions. These are
of greater length than sequences that only match back-
wards to where the goal node was reached, but contain
the actions to immediately show a search result before
that point.

Even more interesting than the fact that ONISI performs
better than IPAM is that they predict different actions cor-
rectly. For the search application, there are 160 cases (ca.
7.5%) in which one of the algorithms predicts correctly and
the other does not. This means that one does not replace



the other, and in the concluding section below we argue that
there is a systematic reason for this that can be exploited in
further research.

Conclusion and Future Work
We have successfully designed and implemented a system
that builds a model of an application, its graphical user in-
terface and its user without requiring any modification of the
application or any interaction with the user. We showed this
approach can be used to predict future user actions by estab-
lishing the state space the user navigates together with the
policy he or she uses to decide upon actions. To do so, we
establish interface states of the application to build a coarse
version of this state space and subsequently refine it. Our
refinement algorithm identifies the k nearest neighbours to
the immediate history and a possible next action and from
their length estimates the action’s likelihood, thus implicitly
identifying the current state. This prediction method works
better than other known future action prediction algorithms,
but differs from them in which actions it can predict success-
fully.

Throughout the paper we identify the main differences be-
tween our approach and IPAM. These differences point to
some of the main issues to be addressed:
1. ONISI and IPAM predict based on very different fea-

tures of the recorded history. ONISI finds matching be-
havioural patters, whereas IPAM collects statistics about
pairs of actions that occur in sequence. ONISI performs
better than IPAM for the data in question in this paper,
but the choice of predictor seems somewhat arbitrary.

2. ONISI and IPAM are able to predict different actions. To
us, this indicates that neither of them is the ideal solution
to the next action prediction problem.

3. An added simple frequency measure enhances our match
length based implicit state identification.

These issues all point to the fact that the choice of patterns
to mine from history and the measure to use in interpreting
them dictate which actions a given algorithm can success-
fully predict. Ideally, the lessons learned from comparing
ONISI to IPAM will let us design an algorithm that can trade
off between the possible choices and draw from the predic-
tive success of both approaches.

Finally, we are currently working on OFESI, an explicit,
off-line version of ONISI (Gorniak and Poole 2000). That
algorithm has a different goal from ONISI in that it should
introduce new states when they explain a large fraction of
actions in the overall application usage. ONISI, on the other
hand, predicts the next action successfully at a given point
in time even if that action occurs extremely rarely. Our re-
sults show that the explicit state graph inferred by OFESI
captures the application and its usage well and can serve as
a tool for application designers to analyse the application
and to augment it with other intelligent interface compo-
nents. Also, there are strong relationships between build-
ing such a stochastic dynamic model and deriving states for
Hidden Markov Models, opening up a whole new realm
of applications in the general field of sequence modeling
(Rabiner 1989, Seymore, McCallum and Rosenfeld 1999).

References
Albrecht, D. W., Zukerman, I., Nicholson, A. E. and Bud,

A.: 1997, Towards a bayesian model for keyhole plan
recognition in large domains, User Modeling: Pro-
ceedings of the Sixth International Conference, UM97.

Boutilier, C., Dean, T. and Hanks, S.: 1999, Decision-
theoretic planning: Structural assumptions and com-
putational leverage, Journal of AI Research 11, 1–94.

Davison, B. D. and Hirsh, H.: 1998, Predicting sequences
of user actions, Technical report, Rutgers, The State
University of New York.

Debevc, M., Meyer, B., Donlagic, D. and Svecko, R.: 1996,
Design and evaluation of an adaptive icon toolbar, User
Modeling and User-Adapted Interaction 6(1), 1–21.

Encarnacao, L.: 1997, Concept and Realization of intel-
ligent user support in interactive graphics applica-
tions, PhD thesis, Eberhard-Karls-Universität Tübin-
gen, Fakultät für Informatik.

Gorniak, P. J.: 1998, Sorting email messages by topic.
Project Report.

Gorniak, P. J. and Poole, D. L.: 2000, Building a stochastic
dynamic model of application use. Forthcoming.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D. and Rom-
melse, K.: 1998, The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users, Uncertainty in Artifical Intelligence, Proceed-
ings of the Fourteenth Conference.

JDK: 1998, Java Development Kit Documentation.
URL: http://java.sun.com/products/jdk/1.1/docs/index.html

Lane, T.: 1999, Hidden markov models for human/computer
interface modeling, Proceedings of the IJCAI-99 Work-
shop on Learning about Users, pp. 35–44.

Lieberman, H.: 1998, Integrating user interface agents with
conventional applications, Proceedings of the Interna-
tional Conference on Intelligent User Interfaces, San
Francisco.

McCallum, A. R.: 1996, Instance-based state identification
for reinforcement learning, Technical report, Universi-
ty of Rochester.

Rabiner, L.: 1989, A tutorial on hidden markov models and
selected applications in speech recognition, Proceed-
ings of the IEEE, Vol. 77(2).

Ruvini, J.-D. and Dory, C.: 2000, Ape: Learning user’s
habits to automate repetitive tasks, Proceedings of
the International Conference on Intelligent User Inter-
faces.

Seymore, K., McCallum, A. R. and Rosenfeld, R.: 1999,
Learning hidden markov model structure for informa-
tion extraction, AAAI-99 Workshop on Machine Learn-
ing for Information Extraction.

Zukerman, I., Albrecht, D. and Nicholson, A.: 1999, Pre-
dicting users’ requests on the www, User Model-
ing: Proceedings of the 7th International Conference,
UM99.

http://java.sun.com/products/jdk/1.1/docs/index.html

	Introduction
	State Identification Algorithm
	Implementation
	Results
	Conclusion and References
	www.cs.ubc.ca
	CIspace: Tools for Learning Compuational Intelligence


